伍、附件

附件一、軍民通用科技合作研究規劃書(由本院執行單位提供併案審查)

一、合作研究內容

(一)合作研究計畫摘要

計畫名稱:輕量化鋁基碳化物複材開發

契約編號:BR1149002

案別:■新建案 □賡續案

中科院材雷所加測組/計畫執行負責人:陳彥仲/職稱:工程師/雷話:357065

評估項目 本計畫進行輕量化碳化物複材之開發,協助國內業界建立輕量化銘基碳化物複材,開發完成後,除可直接支援新系統零組件開發,企業亦可向下支援拓展民生市場,考量外銷相關產品,進一步拓展我國之產業發展。 114 年工作目標為開發銘基碳化物料胚及射出成型散熱基板,驗證規格如下: 1. 建立 Al-B₄C 複材料胚(厚度≥25 mm,外徑尺寸≥50mm),B₄C含量≤10%,密度≤2.7 g/cm³,繳密度≥94%,抗彎強度≥250MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥40×40×2mm,50%≤SiC含量≤65%,CTE≤12ppm,熱傳導率≥150W/mK。 115 年工作目標為開發銘基碳化物料胚及射出成型散熱基板。驗證規格如下: 1. 建立 Al-B₄C 複材料胚(厚度≥25 mm,外徑尺寸≥50mm),B₄C含量≤10%,密度≤2.7g/cm³,繳密度≥96%,抗彎強度≥300MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥100×100×4mm,50%≤SiC含量≤65%,CTE≤12ppm,熱傳導率≥170 W/mK。 116年度工作目標為完成114-115年研發成果之尺寸放大及精進,開發符合輕量化反射鏡底材,驗證規格如下: 1. 完成 Al-SiC-B₄C 底材尺寸≥265×170×8mm、50%≤SiC-B₄C含量≤65%,CTE≤12ppm、抗彎強度		計畫孰行貝貢人‧陳彦仲/職稱‧工程師/電話‧33/063
1.計畫目的 P建立輕量化鋁基碳化物複材,開發完成後,除可直接支援新系統零組件開發,企業亦可向下支援拓展民生市場,考量外銷相關產品,進一步拓展我國之產業發展。 114 年工作目標為開發鋁基碳化物料胚及射出成型散熱基板,驗證規格如下: 1. 建立 Al-B ₄ C 複材料胚(厚度≥25 mm,外徑尺寸≥50mm),B ₄ C 含量≤10%,密度≤2.7 g/cm³,繳密度≥94%,抗彎強度≥250MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥40×40×2mm,50%≤SiC含量≤65%,CTE≤12ppm,熱傳導率≥150W/mK。 115 年工作目標為開發鋁基碳化物料胚及射出成型散熱基板。驗證規格如下: 1. 建立 Al-B ₄ C 複材料胚(厚度≥25 mm,外徑尺寸≥50mm),B ₄ C含量≤10%,密度≤2.7g/cm³,繳密度≥96%,抗彎強度≥300MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥100×100×4mm,50%≤SiC含量≤65%,CTE≤12ppm,熱傳導率≥170 W/mK。 116年度工作目標為完成114-115年研發成果之尺寸放大及精進,開發符合輕量化反射鏡底材,驗證規格如下: 1. 完成 Al-SiC-B ₄ C 底材尺寸≥265×170×8mm、50%	評估項目	內容說明
 散熱基板,驗證規格如下: 1. 建立 Al-B₄C 複材料胚 (厚度≥25 mm,外徑尺寸≥50mm), B₄C 含量≤10%,密度≤2.7 g/cm³,繳密度≥94%,抗彎強度≥250MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥40×40×2mm,50%≤SiC 含量≤65%,CTE≤12ppm,熬傳導率≥150W/mK。 115 年工作目標為開發鋁基碳化物料胚及射出成型散熱基板。驗證規格如下: 1. 建立 Al-B₄C 複材料胚 (厚度≥25 mm,外徑尺寸≥50mm),B₄C 含量≤10%,密度≤2.7g/cm³,繳密度≥96%,抗彎強度≥300MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥100×100×4mm,50%≤SiC含量≤65%,CTE≤12ppm,熟傳導率≥170 W/mK。 116年度工作目標為完成114-115年研發成果之尺寸放大及精進,開發符合輕量化反射鏡底材,驗證規格如下: 1. 完成 Al-SiC-B₄C 底材尺寸≥265×170×8mm、50% 	1.計畫目的	界建立輕量化鋁基碳化物複材,開發完成後,除可 直接支援新系統零組件開發,企業亦可向下支援拓 展民生市場,考量外銷相關產品,進一步拓展我國
≥400MPa、彈性模量≥150GPa。	2.計畫目標	114 年工作目標為開發鋁基碳化物料胚及射出成型散熱基板,驗證規格如下: 1. 建立 Al-B4C 複材料胚 (厚度≥25 mm,外徑尺寸≥50mm),B4C 含量≤10%,密度≤2.7 g/cm³,繳密度≥94%,抗彎強度≥250MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥40×40×2mm,50%≤SiC 含量≤65%,CTE≤12ppm,熱傳導率≥150W/mK。 115 年工作目標為開發鋁基碳化物料胚及射出成型散熱基板。驗證規格如下: 1. 建立 Al-B4C 複材料胚 (厚度≥25 mm,外徑尺寸≥50mm),B4C含量≤10%,密度≤2.7g/cm³,繳密度≥96%,抗彎強度≥300MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥100×100×4mm,50%≤SiC含量≤65%,CTE≤12ppm,熱傳導率≥170 W/mK。 116 年度工作目標為完成 114-115 年研發成果之尺寸放大及精進,開發符合輕量化反射鏡底材,驗證規格如下: 1. 完成 Al-SiC-B4C 底材尺寸≥265×170×8mm、50%≤SiC-B4C含量≤65%,CTE≤12ppm、抗彎強度

	 117 年度工作目標,驗證規格如下: 1. 完成反射鏡底材尺寸≥265×170×8mm 2. 完成反射鏡底材粗拋光: Al-SiC-B₄C 底材粗拋光 3. 完成反射鏡底材鍍鎳: Al-SiC-B₄C 底材鍍厚化鎳, NiP 鍍層厚度≥100μm。 4. 完成 Al-SiC-B₄C-NiP 拋光製程: NiP 鍍層精密拋光 5. 完成面精度(λ=0.6328μm)≤1.0 λ。 6. 完成 Al-SiC-B₄C-NiP-Al 蒸鍍鋁製程形成反射膜。 7. 完成反射鏡量測:反射率 R≥95%,波長 1.54um, AOI=45 度;反射率 R≥97%,波長 3-5μm, AOI=45
	•
	度;反射率 R≥93%, 波長為可見光。
3.中科院與合作廠商 分工規劃	廠商: 1. 完成 Al-B ₄ C 複材料胚 (厚度≥25 mm,外徑尺寸≥50mm),B ₄ C 含量≤10%,密度≤2.7 g/cm³,緻密度≥94%,抗彎強度≥250MPa。 2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥40×40×2mm, 50%≤SiC 含量≤65%,CTE≤12ppm, 熱傳導率≥150 W/mK。 3. 完成鋁基碳化物 Al-B ₄ C 料胚及射出成型 Al-SiC散熱基板各1件,共2件。
	中科院材電所:
	1. 技轉業界完成「輕量化鋁基碳化物複合材料」產
	日. 投特系介元成 輕重化鉛基吸化物複合材料」產品開發。
	2. 協助廠商完成鋁基碳化物 Al-B ₄ C 料胚及射出成型
	Al-SiC 散熱基板之性能驗證。
	廠商需具備之設施/設備需求,詳述如下:
	局 局
	記證。
4.合作廠商投資設施	廠商需具備之設施/設備(含租賃),詳述如下:
/設備需求	1. 具備真空燒結爐或氣氛燒結設備。
	2. 高性能乾壓設備或冷均壓機。
	3. 鋁基複材加工機或射出成型機。
5.合作技轉軍用技術	輕量化鋁基碳化物複合材料技術。
轉化民生應用項目	
	1. 建立國內自製輕量化鋁基碳化物開發能力,促使
6.合作研究預期效益	國內業界具備散熱基板程開發之基礎能量。
	2. 獲得不同鋁基碳化物Al-B ₄ C料胚及射出成型
	•

	Al-SiC散熱基板之性質。
7.研究分包款建議	需視核定的預算而定,每一案合作研究額度為專案 計畫經費的10%,須繳交營業稅。

(二)中科院材電所對合作廠商技術輔導及授權項目 <請表列方式填寫>

項目	技術輔導及授權項目	數量	是否涉機密
1	輕量化鋁基碳化物複合材料	1件	□是 ☑否

(三)中科院材電所提供合作廠商之技術智財(含文件)規劃項目 <請表列填寫>

項目	技術智財(含文件)規劃項目	數量	是否涉機密
1	碳/碳化硼複合材料的製備方法	1件	□是 ☑否

(四)中科院材電所必要配合作業項目 <請條綱或表列方式簡要填寫>

項次	作業項目	內容概述		
1	技術輔導項目	配合計畫推動時程,適時訪廠、輔導合作廠商,俾利合作 研究案得以如期如質如預算經費完成。		
2	技術文件提供	提供本計畫執行所必需之技術文件。		

二、成品驗收程序〈請詳實填寫,以表列方式說明產出之產品名稱、時程、驗收方式〉

項次	產品名稱及料號	預期交付日	數量	驗收方式
1	Al-B ₄ C 料胚。	114/11/20 前	1件	功能測試,經審查委員 審查合格即可驗收。
2	射出成型 Al-SiC 散熱基板。	114/11/20 前	1件	功能測試,經審查委員 審查合格即可驗收。

產出之項量	1. Al-B ₄ C 料胚及射出成型 Al-SiC 散熱基板各 1 件,共 2 件。
(經測試後歸	2. 技術報告(包含檢驗報告):
中科院所有)	(I) Al-B ₄ C 料胚之檢驗報告。
	(II) 射出成型 Al-SiC 散熱基板檢驗報告。
	1. Al-B ₄ C 複材料胚 (厚度≥25 mm,外徑尺寸≥50mm),B ₄ C
	含量≤10%,密度≤2.7 g/cm³,緻密度≥94%,抗彎強度≥
上口加制旧协	250MPa °
成品研製規格	2. 射出成型散熱基板 Al-SiC,產品尺寸≥40×40×2mm, 50%
(請詳述)	≦SiC 含量≦65%,CTE≦12ppm,熱傳導率≥150W/mK。
	3. Al-B ₄ C 料胚及射出成型 Al-SiC 散熱基板各1件,共2件。
	114 年工作目標為開發民生用途 鋁基碳化物料胚及射出成型
	散熱基板,驗證規格如下:
	1. 建立 Al-B ₄ C 複材料胚(厚度≥25 mm,外徑尺寸≥50mm),
計畫執行時程	B ₄ C 含量≤10%,密度≤2.7 g/cm ³ ,緻密度≥94%,抗彎強
	度≥250MPa。
	2. 完成射出成型散熱基板 Al-SiC,產品尺寸≥40×40×2mm,
	$50\% \leq SiC$ 含量 $\leq 65\%$,CTE ≤ 12 ppm,熱傳導率 ≥ 150

 $W/mK \circ$

115 年工作目標為開發民生用途 鋁基碳化物料胚及射出成型 散熱基板。驗證規格如下:

- 1. 建立 Al-B₄C 複材料胚 (厚度 \geq 25 mm,外徑尺寸 \geq 50mm), B₄C 含量 \leq 10%,密度 \leq 2.7g/cm³,緻密度 \geq 96%,抗彎強度 \geq 300MPa。
- 完成射出成型散熱基板 Al-SiC,產品尺寸≥100×100×4mm, 50%≤SiC 含量≤65%, CTE≤12ppm,熱傳導率≥170 W/mK。

116 年度工作目標為完成 114-115 年研發成果之尺寸放大及精進,開發符合輕量化反射鏡底材,驗證規格如下:

 完成 Al-SiC-B₄C 底材尺寸≥265×170×8mm、50%≤SiC-B₄C 含量≤65%, CTE≤12ppm、抗彎強度≥400MPa、彈性模量 ≥150GPa。

117年度工作目標,驗證規格如下:

- 1. 完成反射鏡底材尺寸≥265×170×8mm
- 2. 完成反射鏡底材粗拋光: Al-SiC-B₄C 底材粗拋光
- 完成反射鏡底材鍍鎳: Al-SiC-B₄C 底材鍍厚化鎳, NiP 鍍層 厚度≥100μm。
- 4. 完成 Al-SiC-B₄C-NiP 抛光製程:NiP 鍍層精密抛光
- 完成面精度(λ=0.6328μm)≤1.0λ。
- 6. 完成 Al-SiC-B₄C-NiP-Al 蒸鍍鋁製程形成反射膜。
- 7. 完成反射鏡量測:反射率 R≥95%,波長 1.54um, AOI=45 度;反射率 R≥97%,波長 3-5μm, AOI=45 度;反射率 R≥93%,波長為可見光。

成品驗收單位

中科院材電所加測組主辦,材電所計管組協辦。

程序、檢驗與 驗證方法

如<驗收佐證資料>

三、廠商提案資格審查條件

(一)廠商須擁有專業相符的實驗室 <基本要求說明>

- 1.合作廠商具備公司執照、營利事業登記證、工廠登記證及以下設備證明 文件(或租賃證明)。
- 2. 具備真空燒結爐或氣氛燒結設備。
- 3. 高性能粉末乾壓設備或冷均壓機。
- 4. 鋁基複材加工機或射出成型機。

(二) 廠商本身須僱用專業相關從業員工 <基本要求說明>

廠商需提供從事高溫燒結、鋁基複材料製備之作業人員或研發人員證明。

(三) 廠商本身須必備之產品研製設施/設備 <基本要求說明>

合作廠商需有冷均壓成型、高溫燒結、鋁基複材加工或射出成型等設備, 承接廠商必須具備輕量化鋁基碳化物複材相關設備或租賃證明文件。

四、預期研究成果

13.391°1.70.20.7°				
研究成果項目		預估數		
增加產值	金 額	10,000 仟元		
產出新產品或服務數	件 數	2 件		
衍生商品或服務數	件數	1 件		
投入研發費用	金 額	1,000 仟元		
归上机次人站	件 數	2 件		
促成投資金額	金 額	10,000 仟元		
增加就業人數	人數	5 人		
衍生科專計畫申請	件 數	0 件		
	金 額	0元		

<114 年度期中/末履約查證廠商應配合事項>

一、期中查證:

- 1. 經費支用原始憑證(影本)備妥於查證會議中備查。
- 2. 期中查證前需備妥下列資料於查證會議中備查:
 - (1) 期中簡報資料。

二、期末查證:

- 1. 經費支用原始憑證(影本)備妥於查證會議中備查,有關合作研究經費 支用原始憑證(影本),結案應繳回材電所(財務組)辦理驗結歸檔存 查;有關本計畫合作研究經費動支,須接受本院(財務組)查核,或配 合補助機關及審計部需求,得隨時調閱廠商與該計畫相關文件、單據及 帳冊等,如有不符該計畫用途經費,本院有權不予核銷,並辦理繳還合 作研究經費程序。
- 2. 期末查證前需完成驗收程序。

- 3. 期末查證需備妥下列資料於查證會議中備查:
 - (1). 期末簡報資料。
 - (2). Al-B₄C 料胚之檢驗報告。
 - (3). 射出成型 Al-SiC 散熱基板檢驗報告。

< 驗收佐證資料>

114年度驗收成品規格及應繳驗資料

- 一、 廠商於期末查證前應繳驗本案研究成果:
- (一) Al-B₄C 料胚及射出成型 Al-SiC 散熱基板各1件,共2件,繳交中科院材 電所。
- (二) Al-B₄C 料胚之檢驗報告。
- (三)射出成型 Al-SiC 散熱基板檢驗報告。

二、本案成品研製規格:

- (一) Al-B₄C 料胚(厚度≥25 mm,外徑尺寸≥50mm),B₄C 含量≤10%,密度≤2.7 g/cm³,緻密度≥94%,抗彎強度≥250MPa。
- (二)射出成型 Al-SiC 散熱基板,產品尺寸≥40×40×2mm, 50%≤SiC 含量≤65%,CTE≤12ppm,熱傳導率≥150 W/mK。

三、本案成品檢測與驗證方法:

(一) 鋁基碳化物材料相關測試報告,需經由第三公證單位執行測試,本單位 僅針對報告進行目視檢測/驗收,檢驗單位:工研院、台灣工藝研究發展 中心、金屬中心、台灣大學嚴慶齡工業研究中心、SGS(台灣檢驗科技公 司)、TUV(台灣德國萊因公司)、國家中山科學研究院或具有 TAF 認證實 驗室之檢驗單位。

四、本案規劃建立試認證供應品項:

項目	供應品名稱	料號	圖號	適用計畫
1	輕量化鋁基碳化物複材			